FUNGSI
Apabila sebelumnya pada bagian relasi dari himpunan A dan himpunan B dalam fungsi disebut sebagai fungsi dari A ke B apabia setiap anggota A dipasangkan dengan tepat satu anggota B.
Maka pada fungsi anggota dari himpunan A disebut sebagai domain (daerah asal). Sementara anggota dari himpunan B disebut sebagai kodomain (daerah kawan). Serta anggota yang ada dalam himpunan B yang berpasangan (himpunan C) disebut sebagai range (hasil) dari fungsi f.
Contoh soal 1.
Diketahui A = {1, 2, 3, 4} serta B = {1, 2, 3, 4, 5, 6, 7, 8}. Sebuah fungsi
f: A → B ditentukan oleh f(x) = 2x – 1. Maka:
a. Gambarlah fungsi f dengan menggunakan diagram panah.
b. Tentukan range dari fungsi f.
c. Gambarlah grafik dari fungsi f
Jawab:
a.
b. f(x) = 2x – 1
f(1) = 2.1 – 1 = 1 f(3) = 2.3 – 1 = 5
f(2) = 2.2 – 1 = 3 f(4) = 2.4 – 1 = 7
Sehingga, range dari fungsi f yaitu {1, 3, 5, 7}
Sifat-sifat Fungsi
Fungsi dikelompokkan menjadi 3 (tiga) jenis yaitu fungsi Injektif, Surjektif, dan Bijektif. Pengelompokkan tersebut didasarkan pada sifatnya. Perbedaan ketiga jenis tersebut dapat disimak pada penjelasan di bawah.
a. Fungsi Injektif/Fungsi Into (Fungsi Satu-satu)
Fungsi pertama yang akan dibahas adalah fungsi injektif atau sering disebut dengan fungsi into atau fungsi satu-satu. Fungsi dikatakan fungsi injektif jika dan hanya jika anggota kodomain hanya dipasangkan satu kali dengan anggota domain.Pada fungsi injektif, anggota himpunan daerah kodomain boleh tidak memiliki pasangan, namun semua anggota kodomain yang terpsangkan hanya ada satu, tidak boleh ada yang lebih dari satu.
Perhatikan gambar di bawah untuk melihat lebih detail mengenai perbedaannya.
b. Fungsi Surjektif (Fungsi Onto)
Fungsi Surjekti atau onto memiliki ciri yaitu anggota kodomainnya boleh memiliki pasangan lebih dari satu, namun tidak boleh ada anggota kodomain yang tidak dipasangkan. Fungsi surjektif biasanya dipenuhi apabila jumlah anggota kodomain sama atau lebih banyak dari anggota domain.
Perhatikan gambar di bawah untuk menambah pemahan sobat idschool tentang sifat fungsi surjektif.
c. Fungsi Bijektif (Korespondensi Satu-satu)
Fungsi Bijektif merupakan gabungan dari fungsi injektif dan surjektif. Pada fungsi bijektif, semua anggota domain dan kodomain terpasangkan tepat satu. Kebalikan fungsi dari fungsi injektif dan surjektif belum pasti fungsi/pemetaan, namun kebalikan fungsi dari fungsi bijektif juga merupakan fungsi/pemetaan. Perhatikan gambar di bawah.
Fungsi Invers dan Sifat Fungsi Invers pada Komposisi Fungsi
Fungsi invers adalah pemetaan yang memiliki arah berlawnan dengan fungsinya. Misalkan suatu fungsi mematakan dari himpunan A ke B. Maka, yang dimaksud fungsi invers adalah fungsi yang memetakan dari B ke A. Pada halaman ini, sobat idschool akan mempelajari fungsi invers dan sifat fungsi invers pada komposisi fungsi.
Suatu fungsi dengan sifat tertentu memiliki invers, fungsi tersebut adalah fungsi yang memiliki sifat bijektif atau korespondensi satu-satu. Begitu juga dengan komposisi fungsi. Komposisi dari dua buah fungsi yang memiliki invers juga akan memiliki invers. Perhatikan pengertian invers yang dijelaskan melalui gambar di bawah untuk membantu pemahaman sobat idschool mengenai fungsi invers pada suatu fungsi dan komposisi fungsi.
Misalkan suatu fungsi memiliki invers dan memiliki invers . Komposisi dan juga akan memiliki invers. Komposisi invers ini memiliki sifat fungsi invers yang akan dijelaskan kemudian.
Pada gambar sebelah kiri ditunjukkan sebuah fungsi yang memiliki fungsi invers . Gambar di sebelah kanan adalah komposisi dua buah fungsi dan inversnya.
Sebelum membahas mengenai sifat invers pasa komposisi fungsi. Kita akan mempelajari terlabih dahulu proses mencari invers dari suatu fungsi. Penjelasan akan disajikan dalam bentuk soal dan pembahasan, jadi simak soal dan pembahasan tentang invers fungsi di bawah dengan baik.
Cara menentukan invers suatu fungsi, seperti cara di atas, memang cukup panjang. Sebenarnya, ada rumus praktis untuk menentukan suatu fungsi invers. Meskipun demikian, sebaiknya sobat idschool sudah menguasai konsep pencarian invers suatu fungsi di atas terlebih dahulu. Hal ini akan bermanfaat untuk sobat idschool nantinya, juga akan bermanfaat ketika sobat idschool lupa rumus cepatnya.
Cara cepat mencari sebuah fungsi invers untuk bentuk tertentu dapat diperoleh dengan cara berikut.
SIFAT INVERS PADA KOMPOSISI FUNGSI
Pembahasan sifat invers pada komposisi fungsi mempelajari hubungan kesamaan suatu fungsi invers dengan kesamaan lainnya. Sifat invers pada komposisi fungsi dapat membuat sobat idschool lebih tepat dalam menentukan langkah yang tepat untuk menyelesaikan variasi soal yang diberikan terkait komposisi fungsi.
Sifat Fungsi Invers pada komposisi fungsi dapat dilihat pada gambar di bawah.








Tidak ada komentar:
Posting Komentar