Senin, 09 Maret 2020


TRIGONOMETRI



Rumus Perbandingan Trigonometri Untuk Sudut-sudut berelasi
            Coba kamu bandingkan nilai sin 30o dengan nilai cos 60o, atau sin 30o dengan sin 150o, atau bagaimana sin 30o  dengan sin 210o. Adakah perbandingan trigonometri yang nilainya sama? Adakah perbandingan trigonometri yang nilainya sama tetapi bertanda berlawanan? Dari kenyataan ini, dapat diduga terdapat hubungan antara perbandingan trigonometri sudut-sudut berbagai ukuran.
Sudut-sudut Berelasi
            Diberikan sudut yang ukurannya α. Sudut lain yang ukurannya (90o  ± α), (180o  ± α), (270o  ± α), (360o ± α), dan –α dikatakan berelasi dengan sudut yang ukurannya α dan sebaliknya.
            Karena sudut yang ukurannya α, (90o  ± α), (180o  ± α), (270o  ± α), (360o ± α), dan –α terletak di kuadran yang berbeda-beda, maka pengkajian sudut-sudut yang berelasi ini akan dikelompokkan dalam tiap kuadran.
Sudut Relasi Kuadran I
Untuk α lancip, maka (90° − α) menghasilkan sudut-sudut kuadran I. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Relasi Kuadran II
Untuk α lancip, maka (90° + α) dan (180° − α) menghasilkan sudut-sudut kuadran II.alam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (90° + α) = cos α
cos (90° + α) = -sin α
tan (90° + α) = -cot α
sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α
Sudut Relasi Kuadran III
Untuk α lancip, maka (180° + α) dan (270° − α) menghasilkan sudut kuadran III. Di dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (180° + α) = -sin α          
cos (180° + α) = -cos α
tan (180° + α) = tan α
sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Relasi Kuadran IV
Untuk α lancip, maka (270° + α) dan (360° − α) menghasilkan sudut kuadran IV. D i dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α
sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Jika diperhatikan, rumus-rumus diatas mempunyai pola yang hampir sama, oleh karena itu sangatlah tidak bijak jika harus menghafalnya satu per satu. Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipaka dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tanda masing-masing kuadran :
Kuadran I (0 − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif
Kuadran III (180° − 270°) = tangen positif.
Kuadran IV (270° − 360°) = cosinus positif
Contoh Soal
Contoh Soal 1
Untuk perbandingan trigonometri berikut, nyatakanlah dalam perbandingan trigonometri sudut komplemennya
sin 20°
tan 40°
cos 53°
Jawab :
sin 20° = sin (90° − 70°)
= cos 70°
tan 40° = tan (90° − 50°)
= cot 50°
cos 53° = cos (90° − 37°)
= sin 37°
Jika diperhatikan pada sin yang berubah menjadi cos, kemudian tan berubah jadi cot sedangkan cos berubah menjadi sin karena relasi yang dipaka adalah (90° − α) dan ketiga perbandingan trigonometri bernilai positif, karena sudut 20°, 40° dan 53° berada di kuadran I.
Contoh Soal 2
Nyatakan tiap perbandingan trigonometri berikut di dalam sudut 37° !
tan 143°
sin 233°
cos 323°
Jawab :
Sudut 143° adapada kuadran II, hingga tan 143° memiliki nilai negatif.
tan 143° = tan (180° − 37°)
= -tan 37°
Sudut 233° ada pada kuadran III, sehingga sinus memiliki nilai negatif.
sin 233° = sin (270° − 37°)
= -cos 37°
Perhatikan sin berubah menjadi cos dikarenakan relasi yang dipakai (270° − α)
Sudut 323° ada pada kuadran IV, hingga cosinus memiliki nilai positif.
cos 323° = cos (360° − 37°)
= cos 37°
Contoh Soal 3
Tanpa memakai kalkulator, tentukan nilai dari sin100−cos190cos350−sin260
Jawab :
sin 100° = sin (90° + 10°)
= cos 10°
cos 190° = cos (180° + 10°)
= -cos 10°
cos 350° = cos (360° − 10°)
= cos 10°
sin 260° = sin (270° − 10°)
= -cos 10°
Hingga :
sin100
−cos190cos350−sin260=cos10−(−cos10)cos10−(−cos10)=2cos102cos10=1